
Using scanners with Axapta Document
Management

Pedro Rodríguez Parra
pedro.rodriguez@lorca.es

mailto:pedro.rodriguez@lorca.es

Using scanners with Axapta Document Management 2

Pedro Rodríguez Parra

Foreword

I was seeking a way to make more agile the work of introducing documents in Axapta
and in the last days I have found a very suitable solution that is both simple and
powerful so I am writing this document to share this idea to the rest of the suffered
Axapta community that like me are all day struggling with the good ERP but not so
good in the documentation side…

Introduction

So, in what consist this project? This project is done using three tools. First I use the
Document Management tables of Axapta, second I use COM Interop in Axapta and
third I have developed a .NET class library that use a .NET SDK that let you to use
easily any TWAIN compliant scanner.

I will first show how it works and later I will give all the details needed to do something
similar and surely better!

Example of use

Here are the basic steps needed to scan documents directly to the Document
Management module of Axapta.

1. We have to configure the Document Management Parameters if we have not done it
yet.

1.1. We have to go to Basic, Setup, Document Management, Parameters.

1.2. We have to introduce the PATH where our documents will be stored in the
Archive Directory field.

1.3. We have to activate the Use Active Document Tables if we want to store
documents for only some tables like CustTable, VendTable and so on.

Using scanners with Axapta Document Management 3

Pedro Rodríguez Parra

1.4. We also have to create a Number Sequence for the Document Management in
the Number Sequences tab.

1.5. We have to go to Basic, Setup, Document Management, Active Document
Tables.

Here we configure what tables are Document Management “enabled”. In this
example I will need at less the Vendor Invoice Journal Table.

1.6. We have to go to Basic, Setup, Document Management, Document Types.

Here we create the type of documents that we are going to associate to our tables
in the Document Management.

For this example I need a type called “VENDINV_SC”, with Job Description
“Attach file” and Group “File”.

1.7. I have created an own table & form on Basic, Setup, Document Management,
Scanners.

Using scanners with Axapta Document Management 4

Pedro Rodríguez Parra

I use this table to get the name of the scanner connected to the computer where
the Axapta client is executing so the users don’t have to be indicating the name
of the scanner every scan they do.

2. Finally we have to scan a document. For example a Vendor Invoice and associate it
with a record of the VendInvoiceJournal Table.

2.1. We can go to the Vendor Invoice Journals form where I have put a sample
button to scan vendor invoices. (Purchase Ledger, Inquiries, Journals,
Invoice).

2.2. We select a vendor invoice and press the Scan Invoice button.

In this moment appears the .NET application developed to scan the documents.

2.3. We press the Scan Document button and the application starts scanning the
document using the scanner connected to the computer.

The application knows the name of the scanner to use because we indicated it in
the step 1.7. If the name of the scanner is not found we will show a dialog where
we will have to select one of the TWAIN devices that are connected in our
computer.

Using scanners with Axapta Document Management 5

Pedro Rodríguez Parra

2.4. After the scanning process we will see the result in the preview screen.

2.5. If the scan is OK we press the Accept button and the scanned invoice will be
stored in the Document Management.

2.6. Now that the invoice is store in the Document Management we will can see it
selecting the Invoice Journal record and later pressing in the Document
Handling in the Tool Bar.

2.7. We also can open the document pressing in the Open Button.

And this all what is needed to scan, store and associate documents with records in
our Axapta system. Simple, isn’t?

In the following pages I will describe how is all done.

Using scanners with Axapta Document Management 6

Pedro Rodríguez Parra

.NET SDKs FOR TWAIN SCANNERS

The first thing needed to do a project like this is to identify a suitable .NET SDK which
will let us to control our TWAIN scanner in a easy way through a DLL Class library
that we will use from Axapta.

During this project I have evaluated 2 SDK:

 AtalaSoft DotTwain 5.0

This SDK cost about $399 and has a good documentation and support forum
site. This seem the most professional and can be purchased like part of a more
big Imaging SDK pack.

 VintaSoft VintaSoftTwain.NET library

This SDK cost about 59$ and has the right functionality needed to make a
project.

I have tried both and I have chose VintaSoft SDK because it has the functionality I just
need and is by far the cheaper one.

THE .NET CLASS LIBRARY DEVELOPED

Using VintaSoftTwain.NET library I have created a new Class library project in Visual
Studio 2005 with a Class named scannerTwain.ScannerTwain in it.

This class has the following method:

public int scanDocument(String documentName,
String scannerName,
int resolution,
String fileName)

{
this.documentName = documentName;
this.scannerName = scannerName;
this.resolution = resolution;
this.fileName = fileName;

formMain.Text = String.Format("Scanning document {0}", this.documentName);
formMain.ScannerTwain = this;
formMain.ShowDialog();

return returnValue;
}

Using scanners with Axapta Document Management 7

Pedro Rodríguez Parra

As we can see I pass by parameters the identify name of the document, the name of the
scanner to use, the resolution to use and the final filename where I want my scanned
document stored.

In this method I simple show the main form and I wait for the form to be closed.

When we press in the Scan Document button the form call the startScan method of
the class scannerTwain.ScannerTwain.

public void startScan()
{

vsTwain = new VSTwain();
vsTwain.PostScan += new

VintaSoft.Twain.VSTwain.PostScanEventHandler(this.VSTwain_PostScan);
vsTwain.StartDevice();

//selecting the Twain device
Boolean sourceFinded = false;
for (int i = 0; i < vsTwain.sourcesCount; i++)
{

if (scannerName.Equals(vsTwain.GetSourceProductName(i)))
{

vsTwain.sourceIndex = i;
sourceFinded = true;
break;

}
}

if (!sourceFinded)
vsTwain.SelectSource();

vsTwain.showUI = false;
vsTwain.disableAfterAcquire = true;

vsTwain.OpenDataSource();
vsTwain.unitOfMeasure = VintaSoft.Twain.UnitOfMeasure.Inches;
vsTwain.pixelType = VintaSoft.Twain.PixelType.GRAY;
vsTwain.resolution = this.resolution;
vsTwain.brightness = 400;
vsTwain.contrast = 0;
vsTwain.pageSize = VintaSoft.Twain.PageSize.A4;

vsTwain.Acquire();
}

Using scanners with Axapta Document Management 8

Pedro Rodríguez Parra

In this method we can see the functionality provided by the .NET TWAIN library
chose. We soon realise how easy is to control a TWAIN scanner with one of these
libraries.

In this method I just initialize the TWAIN handler class vsTwain, I add my event
handler for the PostScanEvent (it will be the method VSTwain_PostScan), I select the
Twain device or I let it to show me the TWAIN devices available, and I initialise
several parameters for the scanning process like the resolution, the page size and so on.

Finally I call the Acquire method and the scanner will scan my document.

When the scan process is completed the PostScanEvent is raised and my method
VSTwain_PostScanwill be called.

private void VSTwain_PostScan(object sender, VintaSoft.Twain.PostScanEventArgs e)
{

if (!e.Flag)
{

if (vsTwain.errorCode != 0)
{

MessageBox.Show(vsTwain.errorString);
}

}
else
{

formMain.setImage(vsTwain.GetCurrentImage());
}
vsTwain.showUI = false;

}

Here I only put the scanned image in a PictureBox control on the form.

public void setImage(Image image)
{

if (this.pictureBox.Image != null)
{

pictureBox.Image.Dispose();
pictureBox.Image = null;

}

this.pictureBox.Image = image;
}

Using scanners with Axapta Document Management 9

Pedro Rodríguez Parra

If all is correct we press in the Accept button and the Image will be saved like a JPG
image with the filename and path indicated in the parameters.

private void buttonAceptar_Click(object sender, EventArgs e)
{

if ((this.scannerTwain != null))
{

if (this.pictureBox.Image == null)
{

MessageBox.Show("No hay ninguna imagen que guardar!","Error");
}
else if (this.scannerTwain.saveImage(this.pictureBox.Image))

this.scannerTwain.scanFinished(true);
}

}

public Boolean saveImage(System.Drawing.Image image)
{

Boolean result = true;
System.Drawing.Imaging.ImageFormat saveFileType;

saveFileType = System.Drawing.Imaging.ImageFormat.Jpeg;
try
{

image.Save(this.fileName, saveFileType);
}
catch (Exception ex)
{

MessageBox.Show("Error al guardar la imagen. " + ex.Message);
return false;

}

return result;
}

Finally the scanFinished method closes the form and makes the method scanDocument
to return a value of 1 (Correct scanning and storing of image).

Using scanners with Axapta Document Management 10

Pedro Rodríguez Parra

REGISTERING OF THE CLASS LIBRARY DLL

In order to be able to use our new DLL Class library from Axapta we have to register it
for COM Interop.

1. In the Assembly info of our Class library project we have to modify the COM
Visible property to true.

// Setting ComVisible to false makes the types in this assembly not visible
// to COM components. If you need to access a type in this assembly from
// COM, set the ComVisible attribute to true on that type.
[assembly: ComVisible(true)]

2. In the Visual Studio 2005 project properties we have to indicate that we want to
sign our DLL with a strong name key file in the Signing section.

3. Finally in the Build section of the project properties we activate the “Register
for COM Interop”.

If we move our generated DLL to another computer and we want to use it with
the Axapta client we have to use this command to Register the DLL like COM
Interop:

Regasm myAssembly.dll /codebase /tlb

Using scanners with Axapta Document Management 11

Pedro Rodríguez Parra

THE AXAPTA PROJECT

Once our DLL Class library is build and registered in the system we are ready to use it
from our Axapta client.

As we have seen in the example, the scanning process starts when the user press on the
Scan Invoice button added on the VendInvoiceJournal form.

When the user press in the button the method scanVendInvoiceJour is called on the
JJ_EscaneadoDocumentos class created for this project:

/*
scanVendInvoiceJour
Params:
VendInvoiceJour VendInvoiceJour

Scan a vendor invoice, store the scanned file on the Document Management path
and creates the needed records in the Document Management tables so the scanned
document will be associated with the VendInvoiceJournal record.
*/
public void scanVendInvoiceJour(VendInvoiceJour VendInvoiceJour)
{
//file name
Str fileName;
//absolute path of the file
Str filePath;
//result of the scan process
int resultScan;
//COM object used to scan
COM myObject = new COM("scannerTwain.ScannerTwain");
//record of an own table that contains a relations of computers and scanners
JJ_DocuScanners JJ_DocuScanners = JJ_DocuScanners::find(Winapi::getcomputername());
;

if (!vendInvoiceJour)
throw error('You need to pass a VendInvoiceJour record like parameter.');

//File name
//Número de factura - Id de Usuario actual - Fecha Actual.JPG
fileName = strfmt("%1-%2-%3.JPG",

vendInvoiceJour.InternalInvoiceId,
CurUserId(),
date2str(systemdateget(), 123, 2, 3, 2, 3, 4));

//Absolute file path
//Document Management path + fileName
filePath = this.archivePath(fileName);

Using scanners with Axapta Document Management 12

Pedro Rodríguez Parra

//we call the scanDocument method of the .NET Class library
resultScan = myObject.scanDocument(strfmt('%1 %2',

VendInvoiceJour.OrderAccount,
VendInvoiceJour.InternalInvoiceId), //descripción

JJ_DocuScanners.ScannerName, //Escaner a utilizar
100, //Resolución
filePath);//ruta del fichero

if (resultScan)
{
//if the document si scanned and stored correctly we store it in the
//Document Management tables
this.writeDocuValue(

int2str(VendInvoiceJour.RecId),
'VendInvoiceJour',
'VENDINV_SC',
"JPG",
"FACTURA",
filePath);

}
}

In this method first I initialize the COM object so I can call the .NET Class library
methods:

COM myObject = new COM("scannerTwain.ScannerTwain");

The filename will be “Internal Invoice Id” + “Current User id” + “Current Date”.

I use the filePath method to concatenate the filename with the Document Management
Path in order to get the absolute path where the file will be stored:

/*
archivePath

Gets the absolute path of the file in the Document Management module.

Returns
Document Management path + file name

*/
private str archivePath(String fileName)
{
str filePath = DocuParameters::find().archivePath;
;
if (! filePath)
throw error("@SYS62843",

'',
SysInfoAction_formRun::newFormname(formstr(docuParameters),
identifierstr(Archive_ArchivePath),"@SYS4157"));

filePath = Docu::fileCheckPath(filePath);
if (! winapi::pathExists(filePath))
throw error("@SYS62844",

'',
SysInfoAction_formRun::newFormname(formstr(docuParameters),
identifierstr(Archive_ArchivePath),"@SYS4157"));

filePath = filePath + filename;

return filePath;
}

Using scanners with Axapta Document Management 13

Pedro Rodríguez Parra

I use the COM object in order to call the scanDocument method created in the .NET
Class Library.

//we call the scanDocument method of the .NET Class library
resultScan = myObject.scanDocument(strfmt('%1 %2',

VendInvoiceJour.OrderAccount,
VendInvoiceJour.InternalInvoiceId), //description

JJ_DocuScanners.ScannerName, //Twain scanner to use
100, //Resolution
filePath);//Absolute file path

If resultScan has the value 1 (correct scanning and storing of file) I call the method
WriteDocuValue in order to create the records in the Document Management tables and
associate the VendInvoice current record with the document.

/*
writeDocuValue

Create the DocuValue and DocuRef records needed to store the scanned document
in the Document Management and associate it with the VendInvoiceJournal record.

PARAMS
-refRecId

RecId of the VendInvoiceJournal record.
-tableName

Name of the VendInvoiceJournal table.
-_typeId

Type of document we are going to generate in the Document Management.. (Table DocuType, Field TypeId)
-fileType

File extension of the file we want to link with the Document Management records. (JPG, PDF, etc.)
-name

Description of the Document Management record.
-filePath

Absolute path of the file we want to store in the Document Management.
*/
private void writeDocuValue(

str refRecId,
TableName tableName,
str _typeId,
str fileType,
str name,
str filePath)

{
DocuValue docuValue;
DocuRef docuRef;
Dictionary dict;
;

dict = new Dictionary();

ttsbegin;
docuValue.clear();
[docuValue.fileName, docuValue.fileType, docuValue.path] =

Docu::splitFilename(filePath);
docuValue.Name = name;
docuValue.insert();

docuRef.clear();
docuRef.Name = name;
docuRef.TypeId = _typeId;
docuRef.ValueRecId = docuValue.RecId;
docuRef.RefTableId = dict.tableName2Id(tableName);
docuRef.RefRecId = str2int(refRecId);
docuRef.insert();

ttscommit;
}

Using scanners with Axapta Document Management 14

Pedro Rodríguez Parra

And that is all! We have scanned a document and associated it with a record or the
VendInvoiceJournal Table so we can see the document easily in the Document
Management module of Axapta.

SCANNERS TESTED

At first the every TWAIN SDK should work will most scanners without major problems
because the TWAIN interfaces seen to be well defined. For this project I have tested the
SDKs with a Canon Scan LiDE 60 and a HP Photosmart C380 and they work fine.

Pedro Rodriguez is the chief engineer of the Spanish cattle company Juan
Jimenez García, S.A. and is working with Axapta 3.0 since 2 years. He is
also interested in .NET and Java development especially in mobile projects
with J2ME.
pedro.rodriguez@lorca.es

