VintaSoftimaging.NET DEMO

TIFF

Revision 6.0

Final — June 3, 1992

Adobe Developers Association A copy of this specification can be found in
Adobe Systems Incorporated http://www.adobe.com/Support/TechNotes.html
1585 Charleston Road and

II\D/I.&n?:i)r: zl?gv(\)/ CA 94039-7900 ftp://ftp.adobe.com/pub/adobe/DeveloperSupport/

TechNotes/PDFfiles
E-Mail: devsup-person@adobe.com

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Copyright

© 1986-1988, 1992 by Adobe Systems Incorporated. Permission to copy without
fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage and the Adobe copyright notice ap-
pears. If the majority of the document is copied or redistributed, it must be distrib-
uted verbatim, without repagination or reformatting. To copy otherwise requires
specific permission from the Adobe Systems Incorporated.

Licenses and Trademarks

PostScript is a trademark of Adobe Systems Incorporated. All instances of the
name PostScript in the text are references to the PostScript language as defined by
Adobe Systems Incorporated unless otherwise stated. The name PostScript also is
used as a product trademark for Adobe Systems’ implementation of the PostScript
language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript
driver” refer to printers, files, and driver programs (respectively) which are writ-
ten in or support the PostScript language. The sentences in this specification that
use “‘PostScript language” as an adjective phrase are so constructed to reinforce
that the name refers to the standard language definition as set forth by Adobe
Systems Incorporated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo,
Adobe Illustrator, Aldus, PageMaker, TIFF, OPI, TrapWise, Tran-Script, Carta,
and Sonata are trademarks of Adobe Systems Incorporated or its subsidiaries, and
may be registered in some jurisdictions.

Apple, LaserWriter, and Macintosh are registered trademarks and Finder and
System 7 are trademarks of Apple, Computer, Inc. Microsoft and MS-DOS are
registered trademarks and Windows is a trademark of Microsoft Corporation.
UNIX is a registered trademark of UNIX System Laboratories, Inc., a wholly
owned subsidiary of Novell, Inc. All other trademarks are the property of their
respective owners.

Production Notes

This document was created electronically using Adobe PageMaker® 6.0.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Contents

1) €0 T 11T 1) o 4
About this SpecifiCcationccvvcmmseecssscrmnssmnssssenssermssssnsisermssssens 4
REViISION NOTES ...covneircreerirscrinennisissisennssisansenensssasensesexssseressesansesssensasens 6
TIFF AdMiniSHrationococurvcocececrricscnecsisrscscnecscsnscsaseescsanscsssensasans 8
Information and SUPPOIT..........cue oot es i 8
Private Fields and Values ... 8
Submitting @ ProPOSAlcoooceee e 9
The TIFF AQVISOry COMIMUIEE ...c.cuvveecree e 9
Other TIFF EXIENSIONS ...c....vecicureeirreeeircecrreaeace e sscsenarece e annece e 9

Part 1: Baseline TIFF ... eenrrrsnisisssssssssssssssessssssnnnsssns e ssssssssnsssnsnas 11
EST=ToT (o] 120 N A" Lo € T{ o] T 12
Section 2: TIFF SIrUCHUIE ...ccoeeeieercirmresisecrcsssenascnessserassenessserensans 13
Section 3: Bilevel IMAgesc..c.curvvmsscresisermsssserissesisssesisaesessssesssens 17
Section 4: Grayscale IMagesccococuvcvereevisenssesirmsinssssnessarcssenesannes 22
Section 5: Palette-COlOr IMAagescccuvcrerirerersaressssensmsanensssensrsanens 23
Section 6: RGB Full Color Imagesccccocmvecrerscrnsscsensiscrnssnsensas 24
Section 7: Additional Baseline TIFF Requirementscc.ccccsvurna. 26
Section 8: Baseline Field Reference GUIAEccocvcororcvrmesirecrcnsnnns 28
Section 9: PackBits COMPIreSSiONccuuscsseesiscnnsssensissencsssensans 42
Section 10: Modified Huffman COmMpresSsSionccvoecsisresencas 43

Part 2: TIFF EXIENSIONSccccvimiiiiirrisiisceeniiniemsssnnresssssss e s ssess s s s ssmssss s nessssnnns 48
Section 11: CCITT Bilevel ENCOAINGSccccecrnesscrerscsensisanerscsennasanes 49
Section 12: Document Storage and Retrievalccoccerireevvrcanen. 55
Section 13: LZW COMPIeSSIiONuvevcurssveerisssersssesissserssssescssssrssosens 57
Section 14: Differencing PrediClOr ... vcrcssoseseseercsssesesecrensanens 64
Section 15: Tiled IMAGESc.coeverercrirmirirrcrisecrisr s isecrcsmn s e cnesmn e 66
Section 16: CMYK IMAgesccocevveremrrvsrensvemrmssnensssermmsssenssserersssnns 69
Section 17: HAIFIONEHINISeveireercvemresisircvee s s evemcrassmnesescnensans 72
Section 18: Associated Alpha Handlingcocucevvovcrcmncsirenncscnne. 77
Section 19: Data Sample FOormatccovommvveeensisermrsennsisernnssennsas 80
Section 20: RGB Image COIOHMETYcocvcecerisscnerscrenrisanesscsenncsanes 82
Section 21: YCBCE IMAGES ...eeeeeecrrrcrimeesisnrcsirenscsns s vsennasanscsssennasanns 89
Section 22: JPEG COMPIreSSiONccoevvveerrssserssssesissserssssesssissrssssenes 95
Section 23: CIE L*a*b* IMAQescccocoeraremrcrinmmriranscsismmrisanscsissesisanes 110

Part 3: APPeNdiCes......ccuiiiecmmnnnemmmmmmmi s s 116
Appendix A: TIFF Tags Sorted by Numbercreeererccrnernn. 117
Appendix B: Operating System Considerationscooeeussisunennss 119
3T L= O 120

TIFF 6.0 Specification

VintaSoftimaging.NET DEMO

Final—June 3, 1992

Introduction

About this Specification

History

This document describes TIFF, a tag-based file format for storing and interchang-
ing raster images.

Scope

The first version of the TIFF specification was published by Aldus Corporation in
the fall of 1986, after a series of meetings with various scanner manufacturers and
software developers. It did not have a revision number but should have been la-
beled Revision 3.0 since there were two major earlier draft releases.

Revision 4.0 contained mostly minor enhancements and was released in April
1987. Revision 5.0, released in October 1988, added support for palette color
images and LZW compression.

TIFF describes image data that typically comes from scanners, frame grabbers,
and paint- and photo-retouching programs.

TIFF is not a printer language or page description language. The purpose of TIFF
is to describe and store raster image data.

A primary goal of TIFF is to provide a rich environment within which applica-
tions can exchange image data. This richness is required to take advantage of the
varying capabilities of scanners and other imaging devices.

Though TIFF is a rich format, it can easily be used for simple scanners and appli-
cations as well because the number of required fields is small.

TIFF will be enhanced on a continuing basis as new imaging needs arise. A high
priority has been given to structuring TIFF so that future enhancements can be
added without causing unnecessary hardship to developers.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Features

» TIFF is capable of describing bilevel, grayscale, palette-color, and full-color
image data in several color spaces.

¢ TIFF includes a number of compression schemes that allow developers to
choose the best space or time tradeoff for their applications.

» TIFF is not tied to specific scanners, printers, or computer display hardware.

¢ TIFF is portable. It does not favor particular operating systems, file systems,
compilers, or processors.

» TIFF is designed to be extensible—to evolve gracefully as new needs arise.

¢ TIFF allows the inclusion of an unlimited amount of private or special-purpose
information.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Revision Notes

Minor changes to TIFF 6.0, March 1995

Updated contact information and TIFF administration policies, since Aldus Cor-
poration merged with Adobe Systems Incorporated on September 1, 1994,

The technical content and pagination are unchanged from the original June 3,
1992 release.

TIFF 5.0 to TIFF 6.0

This revision replaces TIFF Revision 5.0.

In the main body of the document, paragraphs that contain new or substantially-
changed information are shown in italics.

New Features in Revision 6.0

Major enhancements to TIFF 6.0 are described in Part 2. They include:
* CMYK image definition

* Arevised RGB Colorimetry section.

¢ YCbCrimage definition

¢ CIE L*a*b* image definition

» Tiled image definition

* JPEG compression

Clarifications

¢ The LZW compression section more clearly explains when to switch the cod-
ing bit length.

¢ The interaction between Compression=2 (CCITT Huffman) and
PhotometricInterpretation was clarified.

¢ The data organization of uncompressed data (Compression=1) when
BitsPerSample is greater than 8 was clarified. See the Compression field de-
scription.

» The discussion of CCITT Group 3 and Group 4 bilevel image encodings was
clarified and expanded, and Group3Options and Group4Options fields were
renamed T4Options and T60ptions. See Section 11.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Organizational Changes

* To make the organization more consistent and expandable, appendices were
transformed into numbered sections.

¢ The document was divided into two parts—Baseline and Extensions—to help
developers make better and more consistent implementation choices. Part 1,
the Baseline section, describes those features that all general-purpose TIFF
readers should support. Part 2, the Extensions section, describes a number of
features that can be used by special or advanced applications.

» Anindex and table of contents were added.

Changes in Requirements

* Toillustrate a Baseline TIFF file earlier in the document, the material from
Appendix G (“TIFF Classes”) in Revision 5 was integrated into the main body
of the specification . As part of this integration, the TIFF Classes terminology
was replaced by the more monolithic Baseline TIFF terminology. The intent
was to further encourage all mainstream TIFF readers to support the Baseline
TIFF requirements for bilevel, grayscale, RGB, and palette-color images.

¢ Due to licensing issues, LZW compression support was moved out of the “Part
1: Baseline TIFF” and into “Part 2: Extensions.”

+ Baseline TIFF requirements for bit depths in palette-color images were weak-
ened a bit.

Changes in Terminology

Compatibility

In previous versions of the specification, the term “tag” reffered both to the identi-
fying number of a TIFF field and to the entire field. In this version, the term “tag”
refers only to the identifying number. The term “field” refers to the entire field,
including the value.

Every attempt has been made to add functionality in such a way as to minimize
compatibility problems with files and software that were based on earlier versions
of the TIFF specification. The goal is that TIFF files should never become obso-
lete and that TIFF software should not have to be revised more frequently than
absolutely necessary. In particular, Baseline TIFF 6.0 files will generally be read-
able even by older applications that assume TIFF 5.0 or an earlier version of the
specification.

However, TIFF 6.0 files that use one of the major new extensions, such as a new
compression scheme or color space, will not be successfully read by older soft-
ware. In such cases, the older applications must gracefully give up and refuse to
import the image, providing the user with a reasonably informative message.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

TIFF Administration

Information and Support

The most recent version of the TIFF specification is available in PDF format on
the Adobe WWW and ftp servers See the cover page of the specification for the
required addresses.

Because of the widespread use of TIFF for in many environments, Adobe is un-
able to provide a general consulting service for TIFF implementors. TIFF devel-
opers are encouraged to study sample TIFF files, read TIFF documentation
thoroughly, and work with developers of other products that are important to you.

If your TIFF question specifically concerns compatibility with an Adobe Systems
product, please contact Adobe Developer Support at devsup-person @adobe.com.

Most companies that use TIFF can answer questions about support for TIFF in
their products. Contact the appropriate product manager or developer support
service group.

Private Fields and Values

An organization might wish to store information meaningful to only that organi-
zation in a TIFF file. Tags numbered 32768 or higher, sometimes called private
tags, are reserved for that purpose.

Upon request, the TIFF administrator (send email to devsup-person@adobe.com)
will allocate and register one or more private tags for an organization, to avoid
possible conflicts with other organizations. You do not need to tell the TIFF ad-
ministrator what you plan to use them for, but giving us this information may help
other developers to avoid some duplication of effort. We will likely make the tag
database public at some point.

Private enumerated values can be accommodated in a similar fashion. For ex-
ample, you may wish to experiment with a new compression scheme within TIFF.
Enumeration constants numbered 32768 or higher are reserved for private usage.
Upon request, the administrator will allocate and register one or more enumerated
values for a particular field (Compression, in our example), to avoid possible
conflicts.

Tags and values allocated in the private number range are not prohibited from
being included in a future revision of this specification. Several such instances
exist in the current TIFF specification.

Do not choose your own tag numbers. Doing so could cause serious compatibility
problems in the future. However, if there is little or no chance that your TIFF files
will escape your private environment, please consider using TIFF tags in the
“reusable” 65000-65535 range. You do not need to contact Adobe when using
numbers in this range.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

If you need more than 10 tags, we suggest that you reserve a single private tag,
define it as a LONG TIFF data type, and use its value as a pointer (offset) to a
private IFD or other data structure of your choosing. Within that I[FD, you can use
whatever tags you want, since no one else will know that it is an IFD unless you
tell them.

Submitting a Proposal

Any person or group that wants to propose a change or addition to the TIFF speci-
fication should prepare a proposal that includes the following information:

+ Name of the person or group making the request, and your affiliation.
¢ The reason for the request.

* Alist of changes exactly as you propose that they appear in the specification.
Use inserts, callouts, or other obvious editorial techniques to indicate areas of
change, and number each change.

» Discussion of the potential impact on the installed base.

* A list of contacts outside your company that support your position. Include
their affiliation.

Please send your proposal to devsup-person@adobe.com.

The TIFF Advisory Committee

The TIFF Advisory Committee is a working group of TIFF experts from a number
of hardware and software manufacturers. It was formed in the spring of 1991 to
provide a forum for debating and refining proposals for the 6.0 release of the TIFF
specification.

If you are a TIFF expert and think you have the time and interest to work on this
committee, contact devsup-person @adobe.com for further information. For the
TIFF 6.0 release, the group met every two or three months, usually on the west
coast of the U.S. Accessibility via Internet email is a requirement for membership,
since that has proven to be an invaluable means for getting work done between
meetings.

Other TIFF Extensions

FheAldusTHFsectionsonrCompuServe-and-Applebink (new location is under
construction; check the Adobe WWW home page (http://www.adobe.com) for

future developements) will contain proposed TIFF extensions from other compa-
nies that are not approved by Adobe as part of Baseline TIFF.

These proposals typically represent specialized uses of TIFF that do not fall
within the domain of publishing or general graphics or picture interchange. Gen-
erally, these features will not be widely supported. If you do write files that incor-
porate these extensions, be sure to either not call them TIFF files or mark them in
some way so that they will not be confused with mainstream TIFF files.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

If you have such a document, send it to devsup-person@adobe.com. All submis-
sions must be PDF documents or simple text. Be sure to include contact informa-
tion—at least an email address.

10

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Part 1: Baseline TIFF

The TIFF specification is divided into two parts. Part 1 describes Baseline TIFF.
Baseline TIFF is the core of TIFF, the essentials that all mainstream TIFF devel-
opers should support in their products.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Section 1: Notation

Decimal and Hexadecimal

Unless otherwise noted, all numeric values in this document are expressed in
decimal. (*“H” is appended to hexidecimal values.)

Compliance

Is and shall indicate mandatory requirements. All compliant writers and readers
must meet the specification.

Should indicates a recommendation.
May indicates an option.

Features designated ‘not recommended for general data interchange’ are consid-
ered extensions to Baseline TIFF. Files that use such features shall be designated
“Extended TIFF 6.0 files, and the particular extensions used should be docu-
mented. A Baseline TIFF 6.0 reader is not required to support any extensions.

12

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Section 2: TIFF Structure

Image File Header

TIFF is an image file format. In this document, a file is defined to be a sequence of
8-bit bytes, where the bytes are numbered from 0 to N. The largest possible TIFF
file is 2*#*32 bytes in length.

A TIFF file begins with an 8-byte image file header that points to an image file
directory (IFD). An image file directory contains information about the image, as
well as pointers to the actual image data.

The following paragraphs describe the image file header and IFD in more detail.

See Figure 1.

Bytes 0-1:

Bytes 2-3

Bytes 4-7

A TIFF file begins with an 8-byte image file header, containing the following
information:

The byte order used within the file. Legal values are:
‘I (4949.H)
“MM” (4D4D.H)

In the “II” format, byte order is always from the least significant byte to the most
significant byte, for both 16-bit and 32-bit integers This is called little-endian byte
order. In the “MM” format, byte order is always from most significant to least
significant, for both 16-bit and 32-bit integers. This is called big-endian byte
order.

An arbitrary but carefully chosen number (42) that further identifies the file as a
TIFF file.

The byte order depends on the value of Bytes 0-1.

The offset (in bytes) of the first IFD. The directory may be at any location in the
file after the header but must begin on a word boundary. In particular, an Image
File Directory may follow the image data it describes. Readers must follow the
pointers wherever they may lead.

The term byte offset is always used in this document to refer to a location with
respect to the beginning of the TIFF file. The first byte of the file has an offset of
0.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992
Figure 1
Header Directory Entry
0 Byte Order X Tag
2 42 X+2 Type
4 Offset of Oth IFD X+4 Count
A
[
i X+8 Value or Offset
IFD
A B Number of Directory Entries V
A+2 Directory Entry 0 Value
A+14 Directory Entry 1
A+26 Directory Entry 2
A+2+B™12 Offset of next IFD

Image File Directory

An Image File Directory (IFD) consists of a 2-byte count of the number of direc-
tory entries (i.e., the number of fields), followed by a sequence of 12-byte field
entries, followed by a 4-byte offset of the next IFD (or 0 if none). (Do not forget to
write the 4 bytes of O after the last IFD.)

There must be at least 1 IFD in a TIFF file and each IFD must have at least one
entry.

See Figure 1.

IFD Entry

Each 12-byte IFD entry has the following format:

Bytes0-1 The Tag that identifies the field.

Bytes2-3 The field Type.

Bytes4-7 The number of values, Count of the indicated Type.

14

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Bytes 8-11 The Value Offset, the file offset (in bytes) of the Value for the field.
The Value is expected to begin on a word boundary; the correspond-
ing Value Offset will thus be an even number. This file offset may
point anywhere in the file, even after the image data.

IFD Terminology

A TIFF field is alogical entity consisting of TIFF tag and its value. This logical
concept is implemented as an /[FD Entry, plus the actual value if it doesn’t fit into
the value/offset part, the last 4 bytes of the IFD Entry. The terms TIFF field and
IFD entry are interchangeable in most contexts.

Sort Order

The entries in an IFD must be sorted in ascending order by Tag. Note that this is
not the order in which the fields are described in this document. The Values to
which directory entries point need not be in any particular order in the file.

Value/Offset

To save time and space the Value Offset contains the Value instead of pointing to
the Value if and only if the Value fits into 4 bytes. If the Value is shorter than 4
bytes, it is left-justified within the 4-byte Value Offset, i.e., stored in the lower-
numbered bytes. Whether the Value fits within 4 bytes is determined by the Type
and Count of the field.

Count

Count—called Length in previous versions of the specification—is the number of
values. Note that Count is not the total number of bytes. For example, a single 16-
bit word (SHORT) has a Count of 1; not 2.

Types

The field types and their sizes are:

1=BYTE 8-bit unsigned integer.

2=ASCII 8-bit byte that contains a 7-bit ASCII code; the last byte
must be NUL (binary zero).

3=SHORT 16-bit (2-byte) unsigned integer.

4 =LONG 32-bit (4-byte) unsigned integer.

5=RATIONAL Two LONGs: the first represents the numerator of a

fraction; the second, the denominator.

The value of the Count part of an ASCII field entry includes the NUL. If padding
is necessary, the Count does not include the pad byte. Note that there is no initial
“count byte” as in Pascal-style strings.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Any ASCII field can contain multiple strings, each terminated with a NUL. A
single string is preferred whenever possible. The Count for multi-string fields is
the number of bytes in all the strings in that field plus their terminating NUL
bytes. Only one NUL is allowed between strings, so that the strings following the
first string will often begin on an odd byte.

The reader must check the type to verify that it contains an expected value. TIFF
currently allows more than 1 valid type for some fields. For example, ImageWidth
and ImageLength are usually specified as having type SHORT. But images with
more than 64K rows or columns must use the LONG field type.

TIFF readers should accept BYTE, SHORT, or LONG values for any unsigned
integer field. This allows a single procedure to retrieve any integer value, makes
reading more robust, and saves disk space in some situations.

In TIFF 6.0, some new field types have been defined:
6=SBYTE An 8-bit signed (twos-complement) integer.

7 =UNDEFINED An 8-bit byte that may contain anything, depending on
the definition of the field.

8 =SSHORT A 16-bit (2-byte) signed (twos-complement) integer.
9=SLONG A 32-bit (4-byte) signed (twos-complement) integer.

10=SRATIONAL Two SLONG’s: the first represents the numerator of a
fraction, the second the denominator.

11 =FLOAT Single precision (4-byte) IEEE format.
12=DOUBLE Double precision (8-byte) IEEE format.

These new field types are also governed by the byte order (I or MM) in the TIFF
header.

Warning: It is possible that other TIFF field types will be added in the future.
Readers should skip over fields containing an unexpected field type.

Fields are arrays

Each TIFF field has an associated Count. This means that all fields are actually
one-dimensional arrays, even though most fields contain only a single value.

For example, to store a complicated data structure in a single private field, use
the UNDEFINED field type and set the Count to the number of bytes required to
hold the data structure.

Multiple Images per TIFF File

There may be more than one IFD in a TIFF file. Each IFD defines a subfile. One
potential use of subfiles is to describe related images, such as the pages of a fac-
simile transmission. A Baseline TIFF reader is not required to read any IFDs
beyond the first one.

16

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Section 3: Bilevel Images

Color

Now that the overall TIFF structure has been described, we can move on to filling
the structure with actual fields (tags and values) that describe raster image data.

To make all of this clearer, the discussion will be organized according to the four
Baseline TIFF image types: bilevel, grayscale, palette-color, and full-color im-
ages. This section describes bilevel images.

Fields required to describe bilevel images are introduced and described briefly
here. Full descriptions of each field can be found in Section 8.

Compression

A bilevel image contains two colors—black and white. TIFF allows an applica-
tion to write out bilevel data in either a white-is-zero or black-is-zero format. The
field that records this information is called PhotometricInterpretation.

Photometricinterpretation
Tag =262 (106.H)

Type =SHORT

Values:

WhitelsZero. For bilevel and grayscale images: 0 is imaged as white. The maxi-
mum value is imaged as black. This is the normal value for Compression=2.

BlackIsZero. For bilevel and grayscale images: O is imaged as black. The maxi-
mum value is imaged as white. If this value is specified for Compression=2, the
image should display and print reversed.

Data can be stored either compressed or uncompressed.

Compression
Tag =259 (103.H)
Type =SHORT
Values:

No compression, but pack data into bytes as tightly as possible, leaving no unused
bits (except at the end of a row). The component values are stored as an array of
type BYTE. Each scan line (row) is padded to the next BYTE boundary.

CCITT Group 3 1-Dimensional Modified Huffman run length encoding. See

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

32773 =

Rows and Columns

Final—June 3, 1992

Section 10 for a description of Modified Huffman Compression.

PackBits compression, a simple byte-oriented run length scheme. See the
PackBits section for details.

Data compression applies only to raster image data. All other TIFF fields are
unaffected.

Baseline TIFF readers must handle all three compression schemes.

An image is organized as a rectangular array of pixels. The dimensions of this
array are stored in the following fields:

ImagelLength
Tag =257 (101.H)
Type =SHORT or LONG

The number of rows (sometimes described as scanlines) in the image.

ImageWidth
Tag =256 (100.H)
Type =SHORT or LONG

The number of columns in the image, i.e., the number of pixels per scanline.

Physical Dimensions

Applications often want to know the size of the picture represented by an image.
This information can be calculated from ImageWidth and ImageLength given the
following resolution data:

ResolutionUnit
Tag =296 (128.H)
Type =SHORT
Values:

No absolute unit of measurement. Used for images that may have a non-square
aspect ratio but no meaningful absolute dimensions.

Inch.
Centimeter.

Default =2 (inch).

18

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

XResolution
Tag =282 (11A.H)
Type =RATIONAL

The number of pixels per ResolutionUnit in the ImageWidth (typically, horizontal
- see Orientation) direction.

YResolution
Tag =283 (11B.H)
Type =RATIONAL

The number of pixels per ResolutionUnit in the ImageLength (typically, vertical)
direction.

Location of the Data

Compressed or uncompressed image data can be stored almost anywhere in a
TIFF file. TIFF also supports breaking an image into separate strips for increased
editing flexibility and efficient I/O buffering. The location and size of each strip is
given by the following fields:

RowsPerStrip

Tag =278 (116.H)

Type =SHORT or LONG

The number of rows in each strip (except possibly the last strip.)

For example, if ImageLength is 24, and RowsPerStrip is 10, then there are 3
strips, with 10 rows in the first strip, 10 rows in the second strip, and 4 rows in the
third strip. (The data in the last strip is not padded with 6 extra rows of dummy
data.)

StripOffsets
Tag =273 (111.H)
Type =SHORT or LONG

For each strip, the byte offset of that strip.

StripByteCounts
Tag =279 (117.H)
Type =SHORT or LONG

For each strip, the number of bytes in that strip after any compression.

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Putting it all together (along with a couple of less-important fields that are dis-
cussed later), a sample bilevel image file might contain the following fields:

A Sample Bilevel TIFF File

Offset Description Value

(hex) (numeric values are expressed in hexadecimal notation)
Header:

0000 Byte Order 4D4D

0002 42 002A

0004 1stIFD offset 00000014

IFD:

0014 Number of Directory Entries 000C

0016 NewSubfileType 00FE 0004 00000001 00000000
0022 ImageWidth 0100 0004 00000001 000007DO
002E ImageLength 0101 0004 00000001 00000BBS
003A Compression 0103 0003 00000001 8005 0000
0046 PhotometricInterpretation 0106 0003 00000001 0001 0000
0052 StripOffsets 0111 0004 000000BC 000000B6
005E RowsPerStrip 0116 0004 00000001 00000010
006A StripByteCounts 0117 0003 000000BC 000003A6
0076 XResolution 011A 0005 00000001 00000696
0082 YResolution 011B 0005 00000001 0000069E
008E Software 0131 0002 0000000E 000006A6
009A DateTime 0132 0002 00000014 000006B6
00A6 Next IFD offset 00000000

Values longer than 4 bytes:

00B6 StripOffsets Offset0, Offsetl, ... Offset187

03A6 StripByteCounts Count0, Countl, ... Count187

0696 XResolution 0000012C 00000001

069E YResolution 0000012C 00000001

06A6 Software “PageMaker 4.0”

06B6 DateTime “1988:02:18 13:59:59”

Image Data:

00000700 Compressed data for strip 10

XXXXXXXX Compressed data for strip 179

XXXXXXXX Compressed data for strip 53

XXXXXXXX Compressed data for strip 160

End of example

20

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Comments on the Bilevel Image Example

¢ The IFD in this example starts at 14h. It could have started anywhere in the file
providing the offset was an even number greater than or equal to 8 (since the
TIFF header is always the first 8 bytes of a TIFF file).

¢ With 16 rows per strip, there are 188 strips in all.

¢ The example uses a number of optional fields such as DateTime. TIFF readers
must safely skip over these fields if they do not understand or do not wish to
use the information. Baseline TIFF readers must not require that such fields be
present.

* To make a point, this example has highly-fragmented image data. The strips of
the image are not in sequential order. The point of this example is to illustrate
that strip offsets must not be ignored. Never assume that strip N+1 follows
strip N on disk. It is not required that the image data follow the IFD informa-
tion.

Required Fields for Bilevel Images

Here is a list of required fields for Baseline TIFF bilevel images. The fields are
listed in numerical order, as they would appear in the IFD. Note that the previous
example omits some of these fields. This is permitted because the fields that were
omitted each have a default and the default is appropriate for this file.

TagName Decimal Hex Type Value
ImageWidth 256 100 SHORT or LONG
ImageLength 257 101 SHORT or LONG
Compression 259 103 SHORT 1,2 0r32773
PhotometricInterpretation 262 106 SHORT Oorl
StripOffsets 273 111 SHORT or LONG
RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT
XResolution 282 11A° RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1,20r3

Baseline TIFF bilevel images were called TIFF Class B images in earlier versions
of the TIFF specification.

21

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Section 4: Grayscale Images

Grayscale images are a generalization of bilevel images. Bilevel images can store
only black and white image data, but grayscale images can also store shades of

gray.

To describe such images, you must add or change the following fields. The other
required fields are the same as those required for bilevel images.

Differences from Bilevel Images

Compression = 1 or 32773 (PackBits). In Baseline TIFF, grayscale images can
either be stored as uncompressed data or compressed with the PackBits algorithm.

Caution: PackBits is often ineffective on continuous tone images, including many
grayscale images. In such cases, it is better to leave the image uncompressed.

BitsPerSample

Tag =258 (102.H)

Type =SHORT

The number of bits per component.

Allowable values for Baseline TIFF grayscale images are 4 and 8, allowing either
16 or 256 distinct shades of gray.

Required Fields for Grayscale Images

These are the required fields for grayscale images (in numerical order):

TagName Decimal Hex Type Value
ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 4or8
Compression 259 103 SHORT 1or32773
PhotometricInterpretation 262 106 SHORT Oorl
StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT lor2or3

Baseline TIFF grayscale images were called TIFF Class G images in earlier ver-
sions of the TIFF specification.

22

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Section 5: Palette-color Images

Palette-color images are similar to grayscale images. They still have one compo-
nent per pixel, but the component value is used as an index into a full RGB-lookup
table. To describe such images, you need to add or change the following fields.
The other required fields are the same as those for grayscale images.

Differences from Grayscale Images

PhotometricInterpretation = 3 (Palette Color).

ColorMap

Tag =320(140.H)

Type =SHORT

N =3 * 2**BitsPerSample)

This field defines a Red-Green-Blue color map (often called a lookup table) for
palette color images. In a palette-color image, a pixel value is used to index into an
RGB-lookup table. For example, a palette-color pixel having a value of 0 would
be displayed according to the Oth Red, Green, Blue triplet.

In a TIFF ColorMap, all the Red values come first, followed by the Green values,
then the Blue values. In the ColorMap, black is represented by 0,0,0 and white is
represented by 65535, 65535, 65535.

Required Fields for Palette Color Images

These are the required fields for palette-color images (in numerical order):

TagName Decimal Hex Type Value
ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 4or§
Compression 259 103 SHORT 1 or32773
PhotometricInterpretation 262 106 SHORT 3
StripOffsets 273 111 SHORT or LONG

RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A° RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT lor2or3
ColorMap 320 140 SHORT

Baseline TIFF palette-color images were called TIFF Class P images in earlier
versions of the TIFF specification.

23

TIFF 6.0 Specification

VintaSoftimaging.NET DEMO

Final—June 3, 1992

Section 6: RGB Full Color Images

In an RGB image, each pixel is made up of three components: red, green, and
blue. There is no ColorMap.

To describe an RGB image, you need to add or change the following fields and
values. The other required fields are the same as those required for palette-color
images.

Differences from Palette Color Images

BitsPerSample = 8,8,8. Each component is 8 bits deep in a Baseline TIFF RGB
image.

PhotometricInterpretation = 2 (RGB).

There is no ColorMap.

SamplesPerPixel
Tag =277 (115.H)
Type =SHORT

The number of components per pixel. This number is 3 for RGB images, unless
extra samples are present. See the ExtraSamples field for further information.

Required Fields for RGB Images

These are the required fields for RGB images (in numerical order):

TagName Decimal Hex Type Value
ImageWidth 256 100 SHORT or LONG

ImageLength 257 101 SHORT or LONG
BitsPerSample 258 102 SHORT 8,8.8
Compression 259 103 SHORT 1 or32773
PhotometricInterpretation 262 106 SHORT 2
StripOffsets 273 111 SHORT or LONG
SamplesPerPixel 277 115 SHORT 3 or more
RowsPerStrip 278 116 SHORT or LONG
StripByteCounts 279 117 LONG or SHORT

XResolution 282 11A RATIONAL

YResolution 283 11B RATIONAL

ResolutionUnit 296 128 SHORT 1,20r3

24

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

The BitsPerSample values listed above apply only to the main image data. If
ExtraSamples are present, the appropriate BitsPerSample values for those
samples must also be included.

Baseline TIFF RGB images were called TIFF Class R images in earlier versions
of the TIFF specification.

25

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Section 7: Additional Baseline TIFF
Requirements

This section describes characteristics required of all Baseline TIFF files.

General Requirements

Options. Where there are options, TIFF writers can use whichever they want.
Baseline TIFF readers must be able to handle all of them.

Defaults. TIFF writers may, but are not required to, write out a field that has a
default value, if the default value is the one desired. TIFF readers must be pre-
pared to handle either situation.

Other fields. TIFF readers must be prepared to encounter fields other than those
required in TIFF files. TIFF writers are allowed to write optional fields such as
Make, Model, and DateTime, and TIFF readers may use such fields if they exist.
TIFF readers must not, however, refuse to read the file if such optional fields do
not exist. TIFF readers must also be prepared to encounter and ignore private
fields not described in the TIFF specification.

‘MM’ and ‘II” byte order. TIFF readers must be able to handle both byte orders.
TIFF writers can do whichever is most convenient or efficient.

Multiple subfiles. TIFF readers must be prepared for multiple images (subfiles)
per TIFF file, although they are not required to do anything with images after the
first one. TIFF writers are required to write a long word of O after the last IFD (to
signal that this is the last IFD), as described earlier in this specification.

If multiple subfiles are written, the first one must be the full-resolution image.
Subsequent images, such as reduced-resolution images, may be in any order in the
TIFF file. If a reader wants to use such images, it must scan the corresponding
IFD’s before deciding how to proceed.

TIFF Editors. Editors—applications that modify TIFF files—have a few addi-
tional requirements:

« TIFF editors must be especially careful about subfiles. If a TIFF editor edits a
full-resolution subfile, but does not update an accompanying reduced-resolu-
tion subfile, a reader that uses the reduced-resolution subfile for screen display
will display the wrong thing. So TIFF editors must either create a new reduced-
resolution subfile when they alter a full-resolution subfile or they must delete
any subfiles that they aren’t prepared to deal with.

¢ A similar situation arises with the fields in an [FD. It is unnecessary—and
possibly dangerous—for an editor to copy fields it does not understand be-
cause the editor might alter the file in a way that is incompatible with the un-
known fields.

No Duplicate Pointers. No data should be referenced from more than one place.
TIFF readers and editors are under no obligation to detect this condition and
handle it properly. This would not be a problem if TIFF files were read-only enti-

26

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

ties, but they are not. This warning covers both TIFF field value offsets and fields
that are defined as offsets, such as StripOffsets.

Point to real data. All strip offsets must reference valid locations. (It is not legal to
use an offset of 0 to mean something special.)

Beware of extra components. Some TIFF files may have more components per
pixel than you think. A Baseline TIFF reader must skip over them gracefully,
using the values of the SamplesPerPixel and BitsPerSample fields. For example,
it is possible that the data will have a Photometriclnterpretation of RGB but have
4 SamplesPerPixel. See ExtraSamples for further details.

Beware of new field types. Be prepared to handle unexpected field types such as
floating-point data. A Baseline TIFF reader must skip over such fields gracefully.
Do not expect that BYTE, ASCII, SHORT, LONG, and RATIONAL will always be
a complete list of field types.

Beware of new pixel types. Some TIFF files may have pixel data that consists of
something other than unsigned integers. If the SampleFormat field is present and
the value is not 1, a Baseline TIFF reader that cannot handle the SampleFormat
value must terminate the import process gracefully.

Notes on Required Fields

ImageWidth, ImageLength. Both “SHORT” and “LONG” TIFF field types are
allowed and must be handled properly by readers. TIFF writers can use either
type. TIFF readers are not required to read arbitrarily large files however. Some
readers will give up if the entire image cannot fit into available memory. (In such
cases the reader should inform the user about the problem.) Others will probably
not be able to handle ImageWidth greater than 65535.

RowsPerStrip. SHORT or LONG. Readers must be able to handle any value
between 1 and 2#%32-1. However, some readers may try to read an entire strip
into memory at one time. If the entire image is one strip, the application may run
out of memory. Recommendation: Set RowsPerStrip such that the size of each
strip is about 8K bytes. Do this even for uncompressed data because it is easy for
a writer and makes things simpler for readers. Note that extremely wide high-
resolution images may have rows larger than 8K bytes; in this case, RowsPerStrip
should be 1, and the strip will be larger than 8K.

StripOffsets. SHORT or LONG.
StripByteCounts. SHORT or LONG.

XResolution, YResolution. RATIONAL. Note that the X and Y resolutions may
be unequal. A TIFF reader must be able to handle this case. Typically, TIFF pixel-
editors do not care about the resolution, but applications (such as page layout
programs) do care.

ResolutionUnit. SHORT. TIFF readers must be prepared to handle all three
values for ResolutionUnit.

27

TIFF 6.0 Specification

VintaSoftimaging.NET DEMO

Final—June 3, 1992

Section 8: Baseline Field Reference Guide

The Fields

This section contains detailed information about all the Baseline fields defined in
this version of TIFF. A Baseline field is any field commonly found in a Baseline
TIFF file, whether required or not.

For convenience, fields that were defined in earlier versions of the TIFF specifica-
tion but are no longer generally recommended have also been included in this
section.

New fields that are associated with optional features are not listed in this section.
See Part 2 for descriptions of these new fields. There is a complete list of all fields
described in this specification in Appendix A, and there are entries for all TIFF
fields in the index.

More fields may be added in future versions. Whenever possible they will be
added in a way that allows old TIFF readers to read newer TIFF files.

The documentation for each field contains:

¢ the name of the field

¢ the Tag number

* the field Type

¢ the required Number of Values (N); i.e., the Count

¢ comments describing the field

¢ the default, if any
If the field does not exist, readers must assume the default value for the field.

Most of the fields described in this part of the document are not required or are
required only for particular types of TIFF files. See the preceding sections for lists
of required fields.

Before defining the fields, you must understand these basic concepts: A Baseline
TIFF image is defined to be a two-dimensional array of pixels, each of which
consists of one or more color components. Monochromatic data has one color
component per pixel, while RGB color data has three color components per pixel.

Artist

Person who created the image.
Tag =315 (13B.H)

Type =ASCI

Note: some older TIFF files used this tag for storing Copyright information.

28

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

BitsPerSample
Number of bits per component.
Tag =258 (102.H)

Type =SHORT

N = SamplesPerPixel

Note that this field allows a different number of bits per component for each
component corresponding to a pixel. For example, RGB color data could use a
different number of bits per component for each of the three color planes. Most RGB
files will have the same number of BitsPerSample for each component. Even in this

case, the writer must write all three values.

Default = 1. See also SamplesPerPixel.

CellLength

The length of the dithering or halftoning matrix used to create a dithered or
halftoned bilevel file.

Tag =265 (109.H)

Type =SHORT

N =1

This field should only be present if Threshholding =2
No default. See also Threshholding.

CellWidth

The width of the dithering or halftoning matrix used to create a dithered or
halftoned bilevel file.Tag =264 (108.H)

Type =SHORT
N =1
No default. See also Threshholding.

ColorMap

A color map for palette color images.
Tag =320(140.H)

Type =SHORT

N =3 * (2**BitsPerSample)

This field defines a Red-Green-Blue color map (often called a lookup table) for
palette-color images. In a palette-color image, a pixel value is used to index into
an RGB lookup table. For example, a palette-color pixel having a value of 0
would be displayed according to the Oth Red, Green, Blue triplet.

29

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

In a TIFF ColorMap, all the Red values come first, followed by the Green values,
then the Blue values. The number of values for each color is 2**BitsPerSample.
Therefore, the ColorMap field for an 8-bit palette-color image would have 3 * 256
values.

The width of each value is 16 bits, as implied by the type of SHORT. 0 represents
the minimum intensity, and 65535 represents the maximum intensity. Black is
represented by 0,0,0, and white by 65535, 65535, 65535.

See also PhotometricInterpretation—palette color.

No default. ColorMap must be included in all palette-color images.

Compression

Compression scheme used on the image data.
Tag =259 (103.H)

Type =SHORT

N =1

No compression, but pack data into bytes as tightly as possible leaving no unused
bits except at the end of a row.

If Then the sample values are stored as an array of type:
BitsPerSample = 16 for all samples SHORT

BitsPerSample = 32 for all samples LONG

Otherwise BYTE

Each row is padded to the next BYTE/SHORT/LONG boundary, consistent with
the preceding BitsPerSample rule.

If the image data is stored as an array of SHORTSs or LONGs, the byte ordering
must be consistent with that specified in bytes 0 and 1 of the TIFF file header.
Therefore, little-endian format files will have the least significant bytes preceding
the most significant bytes, while big-endian format files will have the opposite
order.

If the number of bits per component is not a power of 2, and you are willing to give up

some space for better performance, use the next higher power of 2. For example, if

your data can be represented in 6 bits, set BitsPerSample to 8 instead of 6, and then

convert the range of the values from [0,63] to [0,255].

Rows must begin on byte boundaries. (SHORT boundaries if the data is stored as
SHORTs, LONG boundaries if the data is stored as LONGs).

Some graphics systems require image data rows to be word-aligned or double-word-

aligned, and padded to word-boundaries or double-word boundaries. Uncompressed

TIFF rows will need to be copied into word-aligned or double-word-aligned row

buffers before being passed to the graphics routines in these environments.

CCITT Group 3 1-Dimensional Modified Huffman run-length encoding. See
Section 10. BitsPerSample must be 1, since this type of compression is defined
only for bilevel images.

30

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

32773 =

Final—June 3, 1992

PackBits compression, a simple byte-oriented run-length scheme. See Section 9
for details.

Data compression applies only to the image data, pointed to by StripOffsets.
Default = 1.

Copyright
Copyright notice.

Tag =33432 (8298.H)
Type =ASCI

Copyright notice of the person or organization that claims the copyright to the
image. The complete copyright statement should be listed in this field including
any dates and statements of claims. For example, “Copyright, John Smith, 19xx.
All rights reserved.”

DateTime

Date and time of image creation.
Tag =306 (132.H)

Type =ASCI

N =20

The format is: “YYYY:MM:DD HH:MM:SS”, with hours like those on a 24-hour
clock, and one space character between the date and the time. The length of the
string, including the terminating NUL, is 20 bytes.

ExtraSamples
Description of extra components.
Tag =338(152.H)

Type =SHORT

N =m

Specifies that each pixel has m extra components whose interpretation is defined
by one of the values listed below. When this field is used, the SamplesPerPixel
field has a value greater than the PhotometricInterpretation field suggests.

For example, full-color RGB data normally has SamplesPerPixel=3. If
SamplesPerPixel is greater than 3, then the ExtraSamples field describes the
meaning of the extra samples. If SamplesPerPixel is, say, 5 then ExtraSamples
will contain 2 values, one for each extra sample.

ExtraSamples is typically used to include non-color information, such as opacity,
in an image. The possible values for each item in the field's value are:

Unspecified data

Associated alpha data (with pre-multiplied color)

31

TIFF 6.0 Specification

VintaSoftimaging.NET DEMO

2=

Final—June 3, 1992

Unassociated alpha data

Associated alpha data is opacity information; it is fully described in Section 21.
Unassociated alpha data is transparency information that logically exists indepen-
dent of an image; it is commonly called a soft matte. Note that including both
unassociated and associated alpha is undefined because associated alpha specifies
that color components are pre-multiplied by the alpha component, while
unassociated alpha specifies the opposite.

By convention, extra components that are present must be stored as the “last com-
ponents” in each pixel. For example, if SamplesPerPixel is 4 and there is 1 extra
component, then it is located in the last component location (SamplesPerPixel-1)
in each pixel.

Components designated as “‘extra” are just like other components in a pixel. In
particular, the size of such components is defined by the value of the
BitsPerSample field.

With the introduction of this field, TIFF readers must not assume a particular
SamplesPerPixel value based on the value of the PhotometricInterpretation field.
For example, if the file is an RGB file, SamplesPerPixel may be greater than 3.

The default is no extra samples. This field must be present if there are extra
samples.

See also SamplesPerPixel, AssociatedAlpha.

FillOrder

The logical order of bits within a byte.
Tag =266 (10A.-H)

Type =SHORT

N =1

pixels are arranged within a byte such that pixels with lower column values are
stored in the higher-order bits of the byte.

1-bit uncompressed data example: Pixel O of a row is stored in the high-order bit
of byte 0, pixel 1 is stored in the next-highest bit, ..., pixel 7 is stored in the low-
order bit of byte 0, pixel 8 is stored in the high-order bit of byte 1, and so on.

CCITT 1-bit compressed data example: The high-order bit of the first compres-
sion code is stored in the high-order bit of byte 0, the next-highest bit of the first
compression code is stored in the next-highest bit of byte 0, and so on.

pixels are arranged within a byte such that pixels with lower column values are
stored in the lower-order bits of the byte.

We recommend that FillOrder=2 be used only in special-purpose applications. It
is easy and inexpensive for writers to reverse bit order by using a 256-byte lookup
table. FillOrder = 2 should be used only when BitsPerSample = 1 and the data is
either uncompressed or compressed using CCITT 1D or 2D compression, to
avoid potentially ambigous situations.

Support for FillOrder=2 is not required in a Baseline TIFF compliant reader

Default is FillOrder = 1.

32

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992
FreeByteCounts
For each string of contiguous unused bytes in a TIFF file, the number of bytes in
the string.
Tag =289 (121.H)
Type =LONG

Not recommended for general interchange.

See also FreeOffsets.

FreeOffsels

For each string of contiguous unused bytes in a TIFF file, the byte offset of the
string.

Tag =288 (120.H)
Type =LONG
Not recommended for general interchange.

See also FreeByteCounts.

GrayResponseCurve

For grayscale data, the optical density of each possible pixel value.
Tag =291(123.H)

Type =SHORT

N = 2**BitsPerSample

The Oth value of GrayResponseCurve corresponds to the optical density of a pixel
having a value of 0, and so on.

This field may provide useful information for sophisticated applications, but it is
currently ignored by most TIFF readers.

See also GrayResponseUnit, PhotometricInterpretation.

GrayResponseUnit

The precision of the information contained in the GrayResponseCurve.
Tag =290(122.H)

Type =SHORT

N =1

Because optical density is specified in terms of fractional numbers, this field is
necessary to interpret the stored integer information. For example, if
GrayScaleResponseUnits is set to 4 (ten-thousandths of a unit), and a
GrayScaleResponseCurve number for gray level 4 is 3455, then the resulting
actual value is 0.3455.

Optical densitometers typically measure densities within the range of 0.0 to 2.0.

33

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Number represents tenths of a unit.

Number represents hundredths of a unit.

Number represents thousandths of a unit.

Number represents ten-thousandths of a unit.
Number represents hundred-thousandths of a unit.
Modifies GrayResponseCurve.

See also GrayResponseCurve.

For historical reasons, the default is 2. However, for greater accuracy, 3 is recom-
mended.

HostComputer

The computer and/or operating system in use at the time of image creation.
Tag =316 (13C.H)

Type =ASCI

See also Make, Model, Software.

ImageDescription

A string that describes the subject of the image.
Tag =270 (10E.H)

Type =ASCI

For example, a user may wish to attach a comment such as “1988 company pic-
nic” to an image.

ImageLength

The number of rows of pixels in the image.
Tag =257 (101.H)

Type =SHORT or LONG

N =1

No default. See also ImageWidth.

ImageWidth

The number of columns in the image, i.e., the number of pixels per row.
Tag =256 (100.H)

Type =SHORT or LONG

N =1

No default. See also ImageLength.

34

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Make

The scanner manufacturer.
Tag =271 (10F.H)
Type =ASCI

Manufacturer of the scanner, video digitizer, or other type of equipment used to
generate the image. Synthetic images should not include this field.

See also Model, Software.

MaxSampleValue

The maximum component value used.
Tag =281 (119.H)

Type =SHORT

N = SamplesPerPixel

This field is not to be used to affect the visual appearance of an image when it is
displayed or printed. Nor should this field affect the interpretation of any other
field; it is used only for statistical purposes.

Default is 2#*(BitsPerSample) - 1.

MinSampleValue

The minimum component value used.
Tag =280 (118.H)

Type =SHORT

N = SamplesPerPixel

See also MaxSampleValue.

Defaultis 0.

Model

The scanner model name or number.
Tag =272 (110.H)

Type =ASCI

The model name or number of the scanner, video digitizer, or other type of equip-
ment used to generate the image.

See also Make, Software.

35

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Bit0

Bit1

Bit2

Final—June 3, 1992

NewSubfileType

A general indication of the kind of data contained in this subfile.

Tag =254 (FE.H)

Type =LONG

N=1

Replaces the old SubfileType field, due to limitations in the definition of that field.

NewSubfileType is mainly useful when there are multiple subfiles in a single
TIFF file.

This field is made up of a set of 32 flag bits. Unused bits are expected to be 0. Bit 0
is the low-order bit.

Currently defined values are:

is 1 if the image is a reduced-resolution version of another image in this TIFF file;
else the bitis 0.

is 1 if the image is a single page of a multi-page image (see the PageNumber field
description); else the bitis 0.

is 1 if the image defines a transparency mask for another image in this TIFF file.
The PhotometricInterpretation value must be 4, designating a transparency mask.

These values are defined as bit flags because they are independent of each other.

Defaultis 0.

Orientation

The orientation of the image with respect to the rows and columns.
Tag =274(112.H)

Type =SHORT

N =1

The Oth row represents the visual top of the image, and the Oth column represents
the visual left-hand side.

The Oth row represents the visual top of the image, and the Oth column represents
the visual right-hand side.

The Oth row represents the visual bottom of the image, and the Oth column repre-
sents the visual right-hand side.

The Oth row represents the visual bottom of the image, and the Oth column repre-
sents the visual left-hand side.

The Oth row represents the visual left-hand side of the image, and the Oth column
represents the visual top.

The Oth row represents the visual right-hand side of the image, and the Oth column
represents the visual top.

The Oth row represents the visual right-hand side of the image, and the Oth column
represents the visual bottom.

36

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

8=

Final—June 3, 1992

The Oth row represents the visual left-hand side of the image, and the Oth column
represents the visual bottom.

Defaultis 1.

Support for orientations other than 1 is not a Baseline TIFF requirement.

Photometriclnterpretation
The color space of the image data.

Tag =262 (106.H)

Type =SHORT

N =1

WhitelsZero. For bilevel and grayscale images: 0 is imaged as white.
2**BitsPerSample-1 is imaged as black. This is the normal value for Compres-
sion=2.

BlackIsZero. For bilevel and grayscale images: 0 is imaged as black.
2**BitsPerSample-1 is imaged as white. If this value is specified for Compres-
sion=2, the image should display and print reversed.

RGB. In the RGB model, a color is described as a combination of the three pri-
mary colors of light (red, green, and blue) in particular concentrations. For each of
the three components, 0 represents minimum intensity, and 2**BitsPerSample - 1
represents maximum intensity. Thus an RGB value of (0,0,0) represents black,
and (255,255,255) represents white, assuming 8-bit components. For
PlanarConfiguration = 1, the components are stored in the indicated order: first
Red, then Green, then Blue. For PlanarConfiguration = 2, the StripOffsets for the
component planes are stored in the indicated order: first the Red component plane
StripOffsets, then the Green plane StripOffsets, then the Blue plane StripOffsets.

Palette color. In this model, a color is described with a single component. The
value of the component is used as an index into the red, green and blue curves in
the ColorMap field to retrieve an RGB triplet that defines the color. When
PhotometricInterpretation=3 is used, ColorMap must be present and
SamplesPerPixel must be 1.

Transparency Mask.

This means that the image is used to define an irregularly shaped region of another
image in the same TIFF file. SamplesPerPixel and BitsPerSample must be 1.
PackBits compression is recommended. The 1-bits define the interior of the re-
gion; the 0-bits define the exterior of the region.

A reader application can use the mask to determine which parts of the image to
display. Main image pixels that correspond to 1-bits in the transparency mask are
imaged to the screen or printer, but main image pixels that correspond to O-bits in
the mask are not displayed or printed.

The image mask is typically at a higher resolution than the main image, if the
main image is grayscale or color so that the edges can be sharp.

There is no default for PhotometricInterpretation, and it is required. Do not rely
on applications defaulting to what you want.

37

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

PlanarConfiguration

How the components of each pixel are stored.
Tag =284 (11C.H)

Type =SHORT

N =1

1= Chunky format. The component values for each pixel are stored contiguously.
The order of the components within the pixel is specified by
PhotometricInterpretation. For example, for RGB data, the data is stored as
RGBRGBRGB...

2= Planar format. The components are stored in separate “component planes.” The
values in StripOffsets and StripByteCounts are then arranged as a 2-dimensional
array, with SamplesPerPixel rows and StripsPerImage columns. (All of the col-
umns for row 0 are stored first, followed by the columns of row 1, and so on.)
PhotometricInterpretation describes the type of data stored in each component
plane. For example, RGB data is stored with the Red components in one compo-
nent plane, the Green in another, and the Blue in another.

PlanarConfiguration=2 is not currently in widespread use and it is not recom-
mended for general interchange. It is used as an extension and Baseline TIFF
readers are not required to support it.

If SamplesPerPixel is 1, PlanarConfiguration is irrelevant, and need not be in-
cluded.

If a row interleave effect is desired, a writer might write out the data as
PlanarConfiguration=2—separate sample planes—but break up the planes into

multiple strips (one row per strip, perhaps) and interleave the strips.

Defaultis 1. See also BitsPerSample, SamplesPerPixel.

ResolutionUnit

The unit of measurement for XResolution and YResolution.
Tag =296 (128.H)

Type =SHORT

N =1

To be used with XResolution and YResolution.

1= No absolute unit of measurement. Used for images that may have a non-square
aspect ratio, but no meaningful absolute dimensions.
The drawback of ResolutionUnit=1 is that different applications will import the image
at different sizes. Even if the decision is arbitrary, it might be better to use dots per
inch or dots per centimeter, and to pick XResolution and YResolution so that the
aspect ratio is correct and the maximum dimension of the image is about four inches

(the “four” is arbitrary.)

2= Inch.
3= Centimeter.
Default is 2.

38

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

RowsPerStrip

The number of rows per strip.
Tag =278 (116.H)

Type =SHORT or LONG
N =1

TIFF image data is organized into strips for faster random access and efficient /O
buffering.
RowsPerStrip and ImageLength together tell us the number of strips in the entire

image. The equation is:
StripsPerImage = floor ((ImageLength + RowsPerStrip - 1) / RowsPerStrip).

StripsPerImage is not a field. It is merely a value that a TIFF reader will want to
compute because it specifies the number of StripOffsets and StripByteCounts for the

image.

Note that either SHORT or LONG values can be used to specity RowsPerStrip.
SHORT values may be used for small TIFF files. It should be noted, however, that
earlier TIFF specification revisions required LONG values and that some software

may not accept SHORT values.

The default is 2**32 - 1, which is effectively infinity. That is, the entire image is
one strip.

Use of a single strip is not recommended. Choose RowsPerStrip such that each strip is

about 8K bytes, even if the data is not compressed, since it makes buffering simpler

for readers. The “8K” value is fairly arbitrary, but seems to work well.

See also ImageLength, StripOffsets, StripByteCounts, TileWidth, TileLength,
TileOffsets, TileByteCounts.

SamplesPerPixel

The number of components per pixel.
Tag =277 (115.H)

Type =SHORT

N =1

SamplesPerPixel is usually 1 for bilevel, grayscale, and palette-color images.
SamplesPerPixel is usually 3 for RGB images.

Default = 1. See also BitsPerSample, PhotometricInterpretation, ExtraSamples.

Software

Name and version number of the software package(s) used to create the image.
Tag =305 (131.H)

Type =ASCI

See also Make, Model.

39

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

StripByteCounts
For each strip, the number of bytes in the strip after compression.
Tag =279 (117.H)
Type =SHORT or LONG
N = StripsPerImage for PlanarConfiguration equal to 1.
= SamplesPerPixel * StripsPerlmage for PlanarConfiguration equal to 2
This tag is required for Baseline TIFF files.
No default.
See also StripOffsets, RowsPerStrip, TileOffsets, TileByteCounts.

StripOffsets
For each strip, the byte offset of that strip.
Tag =273 (111.H)
Type =SHORT or LONG
N = StripsPerIlmage for PlanarConfiguration equal to 1.
= SamplesPerPixel * StripsPerlmage for PlanarConfiguration equal to 2

The offset is specified with respect to the beginning of the TIFF file. Note that this
implies that each strip has a location independent of the locations of other strips.
This feature may be useful for editing applications. This required field is the only

way for a reader to find the image data. (Unless TileOffsets is used; see
TileOffsets.)

Note that either SHORT or LONG values may be used to specify the strip offsets.
SHORT values may be used for small TIFF files. It should be noted, however, that
earlier TIFF specifications required LONG strip offsets and that some software
may not accept SHORT values.

For maximum compatibility with operating systems such as MS-DOS and Win-
dows, the StripOffsets array should be less than or equal to 64K bytes in length,
and the strips themselves, in both compressed and uncompressed forms, should
not be larger than 64K bytes.

No default. See also StripByteCounts, RowsPerStrip, TileOffsets,
TileByteCounts.

SubfileType

A general indication of the kind of data contained in this subfile.
Tag =255 (FF.H)

Type =SHORT

N =1

40

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification Final—June 3, 1992

Currently defined values are:
1= full-resolution image data
2= reduced-resolution image data
3= asingle page of a multi-page image (see the PageNumber field description).

Note that several image types may be found in a single TIFF file, with each subfile
described by its own IFD.

No default.
This field is deprecated. The NewSubfileType field should be used instead.

Threshholding

For black and white TIFF files that represent shades of gray, the technique used to
convert from gray to black and white pixels.

Tag =263 (107.H)
Type =SHORT
N =1
1= No dithering or halftoning has been applied to the image data.
2= Anordered dither or halftone technique has been applied to the image data.
3= Arandomized process such as error diffusion has been applied to the image data.

Default is Threshholding = 1. See also CellWidth, CellLength.

XResolution

The number of pixels per ResolutionUnit in the ImageWidth direction.
Tag =282 (11A.H)

Type =RATIONAL

N =1

It is not mandatory that the image be actually displayed or printed at the size implied

by this parameter. It is up to the application to use this information as it wishes.

No default. See also YResolution, ResolutionUnit.

YResolution

The number of pixels per ResolutionUnit in the ImageLength direction.
Tag =283 (11B.H)

Type =RATIONAL

N =1

No default. See also XResolution, ResolutionUnit.

41

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Section 9: PackBits Compression

Description

This section describes TIFF compression type 32773, a simple byte-oriented run-
length scheme.

In choosing a simple byte-oriented run-length compression scheme, we arbitrarily
chose the Apple Macintosh PackBits scheme. It has a good worst case behavior
(at most 1 extra byte for every 128 input bytes). For Macintosh users, the toolbox
utilities PackBits and UnPackBits will do the work for you, but it is easy to imple-
ment your own routines.

A pseudo code fragment to unpack might look like this:
Loop until you get the number of unpacked bytes you are expecting:
Read the next source byte into n.
If n is between 0 and 127 inclusive, copy the next n+l bytes literally.

Else if n is between -127 and -1 inclusive, copy the next byte -n+l
times.

Else if n is -128, noop.

Endloop

In the inverse routine, it is best to encode a 2-byte repeat run as a replicate run
except when preceded and followed by a literal run. In that case, it is best to merge
the three runs into one literal run. Always encode 3-byte repeats as replicate runs.
That is the essence of the algorithm. Here are some additional rules:

¢ Pack each row separately. Do not compress across row boundaries.

+ The number of uncompressed bytes per row is defined to be (ImageWidth + 7)
/ 8. If the uncompressed bitmap is required to have an even number of bytes per
row, decompress into word-aligned buffers.

e Ifarunislarger than 128 bytes, encode the remainder of the run as one or more
additional replicate runs.

When PackBits data is decompressed, the result should be interpreted as per com-
pression type 1 (no compression).

42

VintaSoftimaging.NET DEMO

TIFF 6.0 Specification

Final—June 3, 1992

Section 10: Modified Huffman Compression

References

This section describes TIFF compression scheme 2, a method for compressing
bilevel data based on the CCITT Group 3 1D facsimile compression scheme.

¢ “Standardization of Group 3 facsimile apparatus for document transmission,”
Recommendation T.4, Volume VII, Fascicle VIL.3, Terminal Equipment and
Protocols for Telematic Services, The International Telegraph and Telephone
Consultative Committee (CCITT), Geneva, 1985, pages 16 through 31.

* “Facsimile Coding Schemes and Coding Control Functions for Group 4 Fac-
simile Apparatus,” Recommendation T.6, Volume VII, Fascicle VIL.3, Termi-
nal Equipment and Protocols for Telematic Services, The International
Telegraph and Telephone Consultative Committee (CCITT), Geneva, 1985,
pages 40 through 48.

We do not believe that these documents are necessary in order to implement Com-
pression=2. We have included (verbatim in most places) all the pertinent informa-
tion in this section. However, if you wish to order the documents, you can write to
ANSI, Attention: Sales, 1430 Broadway, New York, N.Y., 10018. Ask for the
publication listed above—it contains both Recommendation T.4 and T.6.

Relationship to the CCITT Specifications

Coding Scheme

The CCITT Group 3 and Group 4 specifications describe communications proto-
cols for a particular class of devices. They are not by themselves sufficient to
describe a disk data format. Fortunately, however, the CCITT coding schemes can
be readily adapted to this different environment. The following is one such adap-
tation. Most of the language is copied directly from the CCITT specifications.

See Section 11 for additional CCITT compression options.

A line (row) of data is composed of a series of variable length code words. Each
code word represents a run length of all white or all black. (Actually, more than
one code word may be required to code a given run, in a manner described below.)
White runs and black runs alternate.

To ensure that the receiver (decompressor) maintains color synchronization, all
data lines begin with a white run-length code word set. If the actual scan line
begins with a black run, a white run-length of zero is sent (written). Black or white
run-lengths are defined by the code words in Tables 1 and 2. The code words are
of two types: Terminating code words and Make-up code words. Each run-length
is represented by zero or more Make-up code words followed by exactly one
Terminating code word.

43

